Đề cương ôn tập học kì II môn Toán 10
Bạn đang xem tài liệu "Đề cương ôn tập học kì II môn Toán 10", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
de_cuong_on_tap_hoc_ki_ii_mon_toan_10.pdf
Nội dung tài liệu: Đề cương ôn tập học kì II môn Toán 10
- Gia sư THÀNH ĐƯỢC www.daythem.edu.vn ĐỀ CƯƠNG ÔN TẬP HỌC KÌ II – NĂM HỌC 2009 – 2010 MÔN: TOÁN – KHỐI 10 A – ĐẠI SỐ Bài 1. Giải các bất phương trình sau: a) (x + 2)(x2 - 4)£0 b) x(9x2 -1)(3x + 1) £0 c) (2x + 5)(2x2 - 1) £0 d) (1- 3 x)( -6 x2 + 5x + 1)³0 e) 9x2 - 4x £0 f) x (x - 3)2 - (3- x)£0 g) ( x - 3)( 2 - x)>0 h) x2 + 4x + 3 £0 i) -6 x2 + x + 1³ 0 Bài 2. Giải các bất phương trình sau: 4x - 3 2 - x x (x - 3)2 a) £0 b) ³1 c) ³0 2x +1 3x - 2 (x - 5)(1- x) 3 5 (x + 2)(3x2 + 7x + 4) 2 3 d) ³ e) £0 f) ³ 1- x 2x +1 x(3- 5 x) x2 - 3x + 2 x -1 Bài 3. Giải các bất phương trình sau: x 2 - 3x + 2 a) (- x2 + 3x – 2)(x2 – 5x + 6) ³ 0 b) > 0 x 2 - 4x + 3 x3 + 2x2 - 3 - x3 + 2x2 + x - 2 c) £ 0 d*) ³0 x(2 - x) 4x3 - 9x Bài 4. Giải các bất phương trình sau: a) x2 - 2x - 8 x - 4 x - 5 - 3 - x2 + 3x - 2 Bài 5. Giải các bất phương trình sau: a) 4x - 1 + 2 - x > x - 2 b) x - 2 + 3x > 4 - x c) 2 x - 5 - x + 1 £ 0 d) 6 - x - 2 4 - x ³ x - 3 e) x - 5 - 5 - x ³ 2 - x f) x - 4 £ 3- 2x Bài 6. Giải các phương trình sau: 4 - x 2x +1 a) = b) 10 - 6 x +1 = x 2 - 9x c) x 2 - 2x + 3 = 5 - x x - 3 2 - x x2 + x +1 d) 3 - x - 1 + 2 - 3x = 7 - x e) x 2 - 5x + 4 = x - 4 f) =-3 2x - 1 - x -1 Bài 7. Giải các phương trình sau: a) 16x +17 = 8x - 23 b) x 2 - 3x + 2 = 2x -1 c) 2x - 3x +1 = 6 . Bài 8* Giải các phương trình sau: a) x2 - 1 = x +1 b) 3 12 - x + 3 14 + x = 2 c) x + 3 - 2x -1 = 3x - 2 d) (x+4)(x+1) - 3 x 2 + 5x + 2 =6 e) x 2 + 5x + 7 = x 2 + 5x +13 f) (x - 2) x2 + 4 = x2 - 4 1
- Gia sư THÀNH ĐƯỢC www.daythem.edu.vn Bài 9. Giải các bất phương trình sau: a) - x 2 + 6x - 5 > 8 - 2x b) (x + 5)(3x + 4) 10x +15 d) 0; c) mx2 - (m + 1)x + 2 ³ 0; d) (m + 1)x2 - 2mx + 2m £ 0. Bài 11. Cho phương trình (m - 2)x2 - 2(m + 1)x + 2m – 6 = 0. Tìm m để phương trình a) Có hai nghiệm phân biệt b) Có hai nghiệm trái dấu c) Có hai nghiệm âm phân biệt d) Có hai nghiệm dương phân biệt. Bài 12. Tìm m để phương trình có hai nghiệm x1, x2 thoả mãn điều kiện được chỉ ra: 2 a) x + (2m + 3)x + m – 2 = 0 , x1 0. Bài 13* Cho phương trình x4 + 2(m + 2)x2 – (m + 2) = 0 (1) a) Giải phương trình (1) khi m = 1. b) Tìm m để phương trình (1) có 4 nghiệm phân biệt; c) Tìm m để phương trình (1) có 3 nghiệm phân biệt; d) Tìm m để phương trình (1) có 2 nghiệm phân biệt; e) Tìm m để phương trình (1) có 1 nghiệm duy nhất. Bài 14. Cho tam thức bậc hai f(x) = 3x2 – 6(2m +1)x + 12m + 5. a) Tìm m để f(x) > 0 với mọi x Î R. b*) Tìm m để f(x) có ít nhất một nghiệm lớn hơn -1. Bài 15. Để may đồng phục áo thể dục cho học sinh khối 10 trường A, người ta chọn 46 học sinh trong tổng số 550 học sinh khối 10 để đo chiều cao (đơn vị: cm) và thu được bảng sau: Lớp Tần số Cỡ a) Dấu hiệu và đơn vị điều tra ở đây là gì? áo b) Đây là điều tra mẫu hay điều tra toàn bộ? c) Tìm số trung bình. [160; 162] 5 S1 d) Tìm phương sai và độ lệch chuẩn. [163; 165] 11 S2 e) Vẽ biểu đồ tần số hình cột, tần suất hình quạt. [166; 168] 15 S3 g) Cả khối 10 cần may khoảng bao nhiêu áo mỗi cỡ? [169; 171] 9 S4 [172; 174] 6 S5 N = 46 Bài 16: Để khảo sát kết quả thi tốt nghiệp môn Toán của học sinh trường A, người ta lấy kết quả của 100 học sinh khối 12 và thu được bảng sau: Điểm 0 1 2 3 4 5 6 7 8 9 10 Tấn số 1 1 3 5 8 13 19 24 14 10 2 N=100 2
- Gia sư THÀNH ĐƯỢC www.daythem.edu.vn a) Tìm số trung bình. b) Tìm số trung vị và mốt. Nêu ý nghĩa của chúng. c) Tìm phương sai và độ lệch chuẩn. d) Tìm số học sinh đỗ tốt nghiệp môn Toán (ta coi một học sinh đạt từ 5 điểm trở lên là đỗ tốt nghiệp môn Toán). e) Vẽ biểu đồ tấn suất hình quạt thể hiện số học sinh đỗ, trượt tốt nghiệp môn Toán. Bài 17. Điều tra về số giờ tự học ở nhà (đơn vị: giờ) của 50 học sinh lớp 10, ta có bảng phân bố tần số ghép lớp sau: Lớp Tần số [0; 10) 5 [10; 20) 9 [20; 30) 15 [30; 40) 10 [40; 50) 9 [50; 60] 2 Cộng N = 50 a) Dấu hiệu, đơn vị điều tra ở đây là gì? Kích thước mẫu bằng bao nhiêu? b) Bổ sung cột tần suất để hình thành bảng phân bố tần số, tần suất ghép lớp. c)Vẽ biểu đồ hình cột tần số và đường gấp khúc tần suất. d) Tính số trung bình. Nêu ý nghĩa. e)Tính phương sai và độ lệch chuẩn. Nêu ý nghĩa. Bài 18. Chọn 23 học sinh và ghi cỡ giày của các em ta được mẫu số liệu sau: 39 41 40 43 41 40 44 42 41 43 38 39 41 42 39 40 42 43 41 41 42 39 41 a) Lập bảng phân bố tần số, tần suất. b) Tính số trung vị và số mốt. Nêu ý nghĩa của chúng. c) Tính số trung bình, phương sai và độ lệch chuẩn. Nêu ý nghĩa. Bài 19. Tính các giá trị lượng giác khác của góc a khi biết : 2 3p p a) cosa = , < a < 2p b) tana =-2, < a < p 5 2 2 1 3p p c) sina =- , p < a < c) cota = 5, - p < a <- 3 2 2 a 4 p Bài 20. Tính các giá trị lượng giác của góc a khi biết cos = và 0 < a < . 2 5 2 4 Bài 21. Cho tan a = . Tính giá trị các biểu thức: 3 4sina - cosa sin3 a - 2cos3 a 3sin3 a cosa a) A = b) B = c) C = 3sina + 2cosa sina + 5cosa 4sin4 a + cos4 a 3
- Gia sư THÀNH ĐƯỢC www.daythem.edu.vn Bài 22. Chứng minh các biểu thức sau không phụ thuộc vào x: a) A = 3(sin4x + cos4x) - 2(sin6x + cos6x) ; b) B = 3(sin8x - cos8x) + 4(-2sin6x + cos6x) + 6 sin4x ; c) C = cos6x + 2sin4x cos2x + 3 sin2x cos4x + sin4x; d) D = sin3x sin3x + cos3x cos3x - cos32x . e) E = sin6 x + cos6 x +3sin2 xcos2 x 2p 2p f) F = cos2 x + cos 2 ( + x) + cos 2 ( - x) 3 3 2p 4p g) G = sin2 x + sin 2 (x + ) + sin 2 (x + ). 3 3 1 Bài 23. Cho sina + cosa = . Tính giá trị các biểu thức: 2 a) A = sina .cosa b) B = sin 4 a + cos4 a c) C = | sina - cosa |. Bài 24. 2 p a) Cho sin a = với 0 < a < . Tính các giá trị lượng giác còn lại của cung a. 3 2 æ 3p ö 1 7 b ) C ho cot a =-3 vô ùi a Îç ; 2p÷ . Tính g iaù trò P = + - tan a ; è 2 ø cos a sin a 12 æ 3p ö p c ) Cho sin a = - ; ç < a < 2p ÷. Tính cos( - a) . 13 è 2 ø 3 Bài 25. Tính giá trị các biểu thức: 1 3 1 a) A = - 4 cos200 b) B = - cos800 sin 200 cos200 c) C = sin100. sin300. sin500. sin700 d) D = sin 20 0 sin 40 0 sin 800 + cos 20 0 cos 40 0 cos 800 p 7p 13p 19p 25p 2p 4p 6p e) E = sin .sin .sin .sin .sin e) F = cos + cos + cos 30 30 30 30 30 7 7 7 Bài 26. a) Cho tan a = 2. Tính sin 2a, cos 2a, tan 2a, cot 2a. 4 p a b) Cho sina = và < a < p . Tính các giá trị lượng giác của cung . 5 2 2 c) Cho cos2a = 1 và 0 < a < p . Tính sin 2a ; tan 2a ; sin a ; cos a . 8 2 Bài 27*. Chứng minh các đẳng thức: 3 1 p p 1 a) sin4 a + cos4 a = + cos 4a ; c) cos x.cos( - x).cos( + x) = cos3x ; 4 4 3 3 4 5 3 p p 1 b) sin6 a + cos6 a = + cos 4a ; d) sin x.sin( - x).sin( + x) = sin 3x 8 8 3 3 4 4
- Gia sư THÀNH ĐƯỢC www.daythem.edu.vn tan x -sin x 1 1 e) = h) cos3 x.sinx - sin3x.cosx = sin4x sin3 x cos x(1 + cos x) 4 sin 4a cos 2a 3 3 3 f) . = tana i) sin x.cos3x + cos x.sin3x = sin4x 1+ cos 4a 1+ cos 2a 4 tan2 x 1+ cot 2 x 1+ tan4 x sin(a - b) sin(b - c) sin(c - a) g) . = j) + + = 0 1+ tan 2 x cot2 x tan 2 x + cot 2 x cos a.cos b cos b.cosc cos c.cosa Bài 28. Rút gọn các biểu thức: p p p p a) A = [sinx.sin( - x).sin( + x)]2 +[cosx.cos( - x).cos( + x)]2 3 3 3 3 3p 9p b) B = sin( - x) + cos(7p + x) + 2sin( + x) 2 2 101p 2011p 1001p c) C = cos( + x) + sin(2009p + x) + cos( + x) - tan( - x) + cot(3p + x). 2 2 2 p p 2p 2p d) D = tan x. tan(x + ) + tan(x + ). tan(x + ) + tan(x + ). tan x 3 3 3 3 tan 2 2a - tan2 a e) E = ; 1 - tan 2 2 a. tan2 a 1 1 1 1 f) F =(1 + )(1 + )(1 + )(1 + ) . cosa cos 2a cos 4a cos8a 1 1 1 1 1 1 p g) G = + + + cos x (0 < x < ) 2 2 2 2 2 2 2 Bài 29*. Rút gọn các biểu thức: sinx + sin2x + sin3x + sin4x sin3x + 2sin4x + sin5x a) A = ; c) C = . cosx + cos2x + cos3x + cos4x sin2x + 2sin3x + sin4x cos 4a - cos 2a sin 4x + sin 5x + sin 6x b) B = d) D = sin 4a + sin 2a cos4x + cos5x + cos6x 1 Bài 30*. Tìm giá trị lớn nhất của biểu thức A = . sin 6 x + cos6 x B – HÌNH HỌC Bài 1. Cho D ABC có Aµ = 600 , AC = 8 cm, AB =5 cm. a) Tính độ dài cạnh cạnh BC, diện tích, chiều cao AH của tam giác ABC. b) Chứng minh góc Bµ nhọn. c) Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC. Bài 2. Cho D ABC , a=13 cm b= 14 cm, c=15 cm. a) Tính diện tích D ABC, các góc, độ dài các trung tuyến, b) Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC. 5
- Gia sư THÀNH ĐƯỢC www.daythem.edu.vn Bài 3. Cho D ABC có b=4,5 cm , góc Aµ = 300 , Cµ = 750 a) Tính độ dài các cạnh a, c và số đo góc Bµ . b) Tính diện tích D ABC và chiều cao BH. Bài 4. Viết phương trình tham số, phương trình chính tắc, phương trình tổng quát của đường thẳng d trong các trường hợp sau: ur a) d đi qua A(2; -3) và có vectơ chỉ phương u = (2;-1) . ur b) d đi qua B(4; -2) và có vectơ pháp tuyến n = (-2; 5) . c) d qua hai điểm C(3; -2) và D(-1; 3). d) d qua E(2; -4) và vuông góc với đường thẳng d’: x – 2y – 1 = 0. e) d qua F(-1; 3) và song song với đường thẳng d’: x + 3y – 5 = 0. Bài 5. a) Viết phương trình đường thẳng qua A(1; 2) và song song với đường thẳng 4x – 3y + 5 = 0 . b) Viết phương trình đường thẳng qua giao điểm hai đường thẳng 4x + 7y – 2 = 0 và 8x + y – 13 = 0, đồng thời song song với đường thẳng x – 2y = 0. c) Viết phương trình đường thẳng qua A(-2; 3) và vuông góc với đường thẳng 3x – 4y = 0. Bài 6. Trong mặt phẳng toạ độ Oxy cho tam giác ABC có tọa độ các trung điểm của các cạnh là M(2;1) N(5;3) P(3;-4) a) Lập phương trình các cạnh của tam giác ABC b) Viết phương trình 3 đường trung trực của tam giác ABC c) Xác định tọa độ tâm đường tròn ngoại tiếp tam giác ABC d) Xác định tọa độ các đỉnh của tam giác ABC. Bài 7. Trong mặt phẳng toạ độ Oxy cho ∆ABC có đỉnh A(2; 2) và phương trình hai đường cao kẻ từ B, C lần lượt là: 9x – 3y - 4 = 0, x + y – 2 = 0. a) Viết phương trình các cạnh của ∆ ABC; b) Viết phương trình đường thẳng qua A và vuông góc với AC. Bài 8. Lập phương trình các cạnh của ∆ ABC , biết đỉnh B(2; 5) và hai đường cao có phương trình: 2x + 3y + 7 = 0, x – 11y + 3 = 0. Bài 9. Vie át phương trình ñö ô øng th aúng (D) b ie át: a) (D) q u a M(1;1) vaø taïo 1 g o ùc 450 vô ùi ñö ô øng thaúng (d ): x – y – 2 = 0 b ) (D) qu a M(5; 1) vaø taïo 1 g o ùc 600 vô ùi ñö ô øng thaúng (d): 2x + y – 4 = 0. Bài 10. Trong mặt phẳng toạ độ Oxy, c ho P(2; 5), Q (5; 1). a) Vie át phương trình ñö ô øng tru ng trö ïc c u ûa PQ . b ) Vie át pt ñö ô øng thaúng qu a P sao c ho kho aûng c aùc h tö ø Q ñe án ñö ô øng thaúng ño ù b aèng 3. Bài 11. Trong mặt phẳng toạ độ Oxy cho đường thẳng (d) 2x+3y-1= 0 và M(2;1). a) Tìm M trên (d) sao cho OM=5. b) Xác định tọa độ H là hình chiếu M của trên(d). c) Xác định tọa độ điểm N đối xứng với M qua (d). 6
- Gia sư THÀNH ĐƯỢC www.daythem.edu.vn Bài 12. Trong mặt phẳng toạ độ Oxy, cho A(-1;-2) B(3;-1) C(0;3) a) Chứng minh 3 điểm A, B, C không thảng hang. b) Lập phương trình tổng quát và phương trình tham số của đường cao CH c) Lập phương trình tổng quát và phương trình tham số của đường trung tuyến AM d) Xác định tọa độ trọng tâm , trực tâm của tam giác ABC e) Viết phương trình đường tròn tâm C tiếp xúc với AB f) Viết phương trình đường tròn ngoại tiếp tam giác ABC g) Tính diện tích tam giác ABC Bài 13. Trong hệ toạ độ Oxy cho hai đường thẳng (d1), (d2) có phương trình: (d1): (m+1)x - 2y - m -1 = 0; (d2): x + (m-1)y – m + 2 = 0 a) Chứng minh rằng: (d1) đi qua một điểm cố định. b) Biện luận theo m vị trí tương đối của (d1) và (d2) c) Tìm m để giao điểm của (d1) và (d2) nằm trên trục Oy. Bài 14. Cho ∆ ABC biết A(2; -1) và pt hai đường phân giác trong của góc B và C lần lượt là: (dB): x - 2y + 1 = 0, (dC): x + y + 3 = 0. Tìm pt đường thẳng chứa cạnh BC. Bài 15. Viết phương trình của đường tròn (C) trong các trường hợp sau: a) (C) có tâm I(1 ; - 2) và tiếp xúc với đường thẳng 4x – 3y + 5 = 0 b) (C) đi qua 3 điểm A(1 ; 0), B(0 ; 2), C(2 ; 3) c) (C) đi qua A(2 ; 0), B(3 ; 1) và có bán kính R = 3. d) (C) đi qua 2 điểm A(2 ; 1),B(4 ; 3) và có tâm I nằm trên đường thẳng x – y + 5= 0 Bài 16. Trong mặt phẳng 0xy cho phương trình x2 + y2 - 4x + 8y - 5 = 0 (I). a) Chứng tỏ phương trình (I) là phương trình của đường tròn, xác định tâm và bán kính của đường tròn đó. b) Viết phương trình tiếp tuyến của đường tròn tại các điểm A(-1; 0), B(5; 0). c) Viết phương trình tiếp tuyến của đường tròn biết tiếp tuyến đi qua C(0;-1). d) Viết phương trình tiếp tuyến của đường tròn biết tiếp tuyến song song với đường thẳng d1 có phương trình x + y + 6 = 0. e) Viết phương trình tiếp tuyến của đường tròn biết tiếp tuyến song song với đường thẳng d2 có phương trình 3x + 2y + 1 = 0. 2 2 Bài 17. Trong mặt phẳng Oxy cho các điểm A(0; -1), B(0;1), C(1; ) . 3 a) Chứng tỏ A, B, C không thẳng hàng. b) Viết phương trình đường tròn (S) đường kính AB. 1 3 c) Viết phương trình tiếp tuyến của đường tròn (S) biết tiếp tuyến đi qua M ( ; ) . 2 2 d) Viết phương trình chính tắc của elíp nhận hai điểm A, B làm các đỉnh và đi qua C. a) A(1; 3), B(5; 6), C (7; 0); b ) A(0; 1), B(1; -1), C (2; 0); c ) A(1; 4), B(-7; 4), C (2; -5). x 2 y 2 Bài 18. C ho (E): + = 1 . X aùc ñònh to ïa ño ä c aùc ñænh, tie âu ñie åm c u ûa e lip. Tính ño ä daøi tru ïc 25 9 lô ùn , tru ïc nho û, tie âu c ö ï c u ûa e lip. Bài 19. Lập phương trình chính tắc của elip trong các trường hợp sau: 7